Oxygen Permeation Through a CO₂-Tolerant Mixed Conducting Oxide (Pr0.9La0.1)₂(Ni0.74Cu0.21Ga0.05)O₄+δ

Jun Tang, Yanying Wei, Lingyi Zhou, Zhong Li, and Haihui Wang
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

DOi 10.1002/aic.12742
Published online September 1, 2011 in Wiley Online Library (wileyonlinelibrary.com).

A novel K₂NiF₂-type oxide based on (Pr₀.₉La₀.₁)₂(Ni₀.₇₄Cu₀.₂₁Ga₀.₀₅)O₄₊δ (PLNCG) dense mixed conducting ceramic membrane was successfully prepared through a sol–gel route. The oxygen permeation flux through the membrane swept by pure CO₂ was comparable to that swept by He. The oxygen permeation and the stability of PLNCG under pure CO₂ were investigated in detail. A membrane with a thickness of 0.8 mm was steadily operated for 230 h with a constant oxygen permeation flux of 0.32 mL/(min cm²) at 975°C using pure CO₂ as sweep gas. X-ray diffraction shows that PLNCG can maintain its fluorite phase, and no carbonates were observed, even when it was exposed to pure CO₂ for a long time. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2473–2478, 2012

Keywords: membrane, mixed conductor, oxygen permeation, separation, CO₂

Introduction

Recently, CO₂ capture and storage technologies have received great interest, because they can reduce the emission of CO₂ which is considered as the main contribution to the global warming.¹–⁵ So far, postcombustion capture, precombustion separation, and oxyfuel combustion techniques are three major concepts for CO₂ sequestration.³⁴ Mixed oxygen ionic–electronic conducting ceramic (MIEC) membranes have gained increasing attention due to their potential applications in oxygen supply to power stations with CO₂ sequestration (e.g., according to the oxyfuel concept⁵–⁷) and could be promising for the thermal decommissioning of carbon dioxide in combination with the partial oxidation of methane to syngas.⁶–¹² Many perovskite oxides have been investigated as membranes for oxygen separation. However, there is a main problem for the proper application of perovskite membranes especially. For numerous applications such as the oxyfuel process and hydrocarbon partial oxidations, in which some CO₂ is formed as by-product of an undesired deeper oxidation, the oxygen transporting membranes must sustain their phase stability and oxygen transport property under CO₂-containing atmosphere. Usually, the perovskite-type membranes contain alkaline-earth metals on A site, which tend to react readily with acidic or even amphoteric gases such as SO₂, CO₂, and H₂O to form sulfates,¹³,¹⁴ carbonates,¹⁵–¹⁹ and hydroxides and bicarbonates.²⁰,²¹ Arnold et al.¹⁸ observed an immediate stop of the oxygen permeation for Ba₀.₈Sr₀.₂Co₀.₈Fe₀.₂O₃₊δ (BSCF) membrane, when pure CO₂ was used as sweep gas at 875°C. Yang et al.¹¹ found that the perovskite structure of La₀.₄Sr₀.₆Co₀.₈Fe₀.₂O₃₊δ (LSCF) decomposed to carbonate and metallic oxide phases after CO₂ treatment at 800°C.

Many intensive efforts have been made to develop the CO₂-tolerant ceramic oxygen separation membranes. One effective way is to avoid alkaline-earth metals during the oxides preparation process. Dong et al.²² reported that La₀.₈₅Ce₀.₁Ga₀.₃Fe₀.₆₅Al₀.₀₅O₃₊δ (LCGFA) mixed conducting oxide powder maintained full perovskite structure after annealing in 20 vol % CO₂ + He for 100 h at 900°C. Another way is proper doping which can improve the chemical stability of MIECs’ structure. Zuo et al.²³ found that Zr-doped BaCe₀.₈Y₀.₂O₃₋δ shows an improved stability in the CO₂-containing atmosphere. Zeng et al.²⁴ demonstrated that Ti-doped SrCo₀.₈Fe₀.₂O₃₋δ (SCF) can effectively increase the tolerance toward the acidic CO₂. Very recently, Luo et al.²⁵ developed a novel alkaline and cobalt-free dual-phase CO₂-tolerated oxygen permeable membrane, which exhibits good stability under CO₂-containing atmosphere. However, most of those above-mentioned materials have not been tested under pure CO₂ atmosphere, and the oxygen permeation fluxes through the membranes significantly decreased once CO₂-containing gas instead of pure He was introduced into the sweep side.

Recently, Yashima et al.²⁶ found that a K₂NiF₂-type MIEC material based on (Pr₀.₉La₀.₁)₂(Ni₀.₇₄Cu₀.₂₁Ga₀.₀₅)O₄₊δ (PLNCG) exhibits a significant electronic conductivity. They demonstrated that the oxygen permeability of PLNCG using He as sweep gas is quite high in comparison with the conventional ABO₃₋δ perovskite-type MIECs in the literature. However, the chemical stability and oxygen permeability under CO₂ were not studied yet. As known, the PLNCG is the alkaline-earth metal-free MIEC materials, and it should exhibit a good stability in an atmosphere containing CO₂. Therefore, in this paper, the chemical stability and oxygen permeability of the PLNCG membrane under pure CO₂ are investigated in detail.
Experimental

The sol–gel route based on citric acid and EDTA as complexing and gelation agents has been adapted to prepare the powder. Briefly, Ga was dissolved in nitric acid first, and proper amounts of Pr(NO₃)₃·C₆H₂O, La(NO₃)₃·C₆H₂O, Ni(CH₃COO)₂·C₄H₂O, and Cu(NO₃)₂·C₃H₂O were dissolved in water followed by the addition of citric acid, ethylene diamine tetraacetic acid (EDTA), and NH₃·H₂O. The mixture was then evaporated at 150°C/14°C under constant stirring to obtain a dark-green gel. Afterward, the gel was ignited to flame to get the precursor. The precursor was ground and calcined at temperatures up to 950°C/14°C with a heating rate of 2°C/min for 10 h. The as-prepared powders were then pressed under 20 MPa to get "green" membranes which were sintered at 1300°C with a dwelling time of 10 h. The densities of the sintered membranes were determined by the Archimedes method using ethanol. Only those membranes that have relative densities higher than 95% are used for oxygen permeation studies.

The phase structure of the as-prepared powder was characterized by X-ray diffraction (XRD, Bruker-D8 ADVANCE, Cu Kα radiation). Thermogravimetric (TG) measurements were performed on a Netzsch 449C simultaneous thermal analyzer under pure CO₂ and N₂.

The oxygen permeation experiments were carried out in a home-made high-temperature permeation cell which was described in detail elsewhere. Membranes were sealed onto a ceramic tube with a ceramic sealant (Huitian Adhesive Enterprise, Hubei, China). After sealing, gases were delivered to the permeation cell by mass flow controllers (model D07-7A/ZM, Beijing Jianzhong Machine Factory, China). Synthetic air was fed to the air side of the membrane, and He/CO₂ was fed to the sweep side. The O₂ concentration of the effluent was continuously detected by an on-line gas chromatograph (GC, Agilent Technologies, 7890A). The GC was frequently calibrated using standard gases like oxygen, helium, and CO₂ to ensure the reliability of the experimental data. Details about the calculation of oxygen permeation flux were presented in our previous paper. In order to analyze the structure of membrane after permeation, XRD characterization was conducted on both surfaces exposed to CO₂ and air.

Results and Discussion

In order to investigate the structural stability of (Pr₀.9La₀.1)₂(Ni₀.7₄Cu₀.2₁Ga₀.0₅)O₄₋ₓ under CO₂-containing atmospheres, the phase structures of PLNCG powders treated under different CO₂ concentration atmospheres and temperatures are investigated. Figure 1 shows the XRD patterns of the PLNCG powders before and after exposure to CO₂ with different concentrations at 950°C for 1 h. As shown in Figure 1, the PLNCG powder samples maintain the K₂NiF₄ structure with the increase of the CO₂ concentration even under the pure CO₂. Figure 2 shows the XRD patterns of the PLNCG powder samples after exposure to pure CO₂ at different temperatures for 1 h. The PLNCG powder samples still maintain the K₂NiF₄ structure under pure CO₂ in the temperature range studied, and no carbonate is observed.

Figure 3 shows thermogravimetric curves of BSCF and PLNCG under CO₂/N₂ atmospheres. The samples were heated with ramp rates of 15°C/min and held at the peak temperature of 800°C for 1 h in pure CO₂/N₂ atmosphere with a flow rate of 50 mL/min. It can be seen that the weight change of PLNCG powder under pure CO₂ atmosphere is nearly the same to that under N₂ atmosphere. The mass of PLNCG decreases slightly with the increase of temperature, and no change is observed while dwelling at the maximum temperature. No sharp weight increase or loss of the PLNCG sample indicates that no carbonates generated or decomposed during the temperature increasing. The slight loss of the powder weight under both N₂ and CO₂ atmospheres may be attributed to desorption of interstitial oxygen. For comparison, the TG of BSCF was performed at the same conditions. As we can see that the mass change of BSCF treated in CO₂ is very different from that of PLNCG. About 1.8% mass loss of BSCF is observed when the temperature is below 450°C. Then, the mass of BSCF sample starts to increase at about 450°C and continues to increase till 800°C.
Around 4.5% mass increase is observed during the temperature increases from 450 to 800°C, which is attributed to the formation of carbonate such as BaCO₃, as shown in Figure 4. Figure 4 presents the XRD pattern of PLNCG and BSCF after TG measurements. As we can see that both the PLNCG powder treated in CO₂ and N₂ still maintain the K₂NiF₄-type structure. However, the perovskite structure of BSCF is destroyed, and the peaks of BaCO₃ and CoO structure appear, as shown in the XRD pattern of the BSCF sample treated in CO₂. Obviously, the BSCF sample is not stable under CO₂ atmosphere due to the formation of BaCO₃. Recently, Lin’s group reported the O₂ desorption behaviors of SCF and LSCF in CO₂-containing atmosphere. The XRD patterns of SCF and LSCF after oxygen desorption show that most of SCF and LSCF decomposed into SrCO₃, Fe₂O₃, and CoO, which indicates SCF and LSCF are not stable in CO₂-containing atmosphere. From these comparisons, it is obvious that PLNCG exhibits better stability in the CO₂-containing atmosphere than these perovskite materials containing alkaline-earth metals like BSCF, LSCF, and SCF.

Figure 3. Thermogravimetric curves of BSCF and PLNCG under pure CO₂/N₂ atmosphere.

Figure 4. XRD patterns of PLNCG and BSCF powder samples after TG under pure CO₂/N₂ atmosphere.

Figure 5 shows the dependence of oxygen permeation flux on the concentration of CO₂ on the sweep side at different temperatures. The total flow rate of sweep gases was kept at 30 mL/min. When CO₂ is introduced into the sweep gas, the oxygen permeation fluxes only slightly decrease. Afterward, with the increase of the content of CO₂, the oxygen permeation fluxes are almost constant. Many previous studies indicate that the oxygen surface-exchange reaction on MIECs is affected by the gas atmospheres. Ten Elshof et al. observed that the activation energy found on La₀.₇Sr₀.₃FeO₃ in air/CO₂/CO gradients is much lower than in air/He/CO₂ gradients. Yashiro et al. found that the oxygen surface-exchange reaction on gadolinia-doped ceria is related with the gas species. Therefore, the slight fall of the oxygen flux may attribute to the inhibiting effect of CO₂ on the oxygen surface-exchange reaction; in other words, the presence of CO₂ restricted O₂ desorption from the surface of PLNCG membrane.

Figure 5. Dependence of oxygen permeation fluxes on the concentration of CO₂ in the sweep gas at different temperatures. \(F_{air} = 150\) mL/min, \(F_{He} + F_{CO₂} = 30\) mL/min.

Figure 6. Oxygen permeation fluxes as a function of time while periodically changing the sweep gases. \(F_{air} = 150\) mL/min, \(F_{He} + F_{CO₂} = 30\) mL/min.
Figure 6 shows the reversibility of oxygen permeation flux through the PLNCG membrane while periodically changing the sweep gas between He and CO₂ at 975°C. If helium is used as the sweep gas, the oxygen permeation fluxes of 0.34 mL/(min cm²) are obtained. When the sweep gas was changed from He to CO₂, the oxygen permeation flux is 0.32 mL/(min cm²). Only a slight decrease of the oxygen permeation flux was observed, which is quite different from the alkane-containing perovskite membranes like BSCF. Arnold et al.¹⁸ found an immediate stop of the oxygen permeation for BSCF membrane when pure CO₂ was used as sweep gas at 875°C. Furthermore, when the sweep gas is shifted back to pure helium, the oxygen permeation flux can be recovered.

Some other CO₂-tolerant oxygen permeable membrane materials have been studied in the literature.²²,²⁵ Dong et al.²² found that the oxygen permeation flux through the LCGFA membrane with the membrane thickness of 1.0 mm is 0.17 mL/(min cm²) under air/(He + 20% CO₂) at 950°C. Luo et al.²⁵ achieved the oxygen permeation flux of 0.27 mL/(min cm²) through a dual-phase membrane containing 40 wt % NiFe₂O₄ and 60 wt % Ce₀.₃Gd₀.₁O₂₋₀.₇ (40NFO–60CGO) at 1000°C, when pure CO₂ is used as sweep gas. It is clear that the PLNCG membrane shows higher oxygen permeation fluxes than those through the LCGFA and 40NFO–60CGO under similar operation conditions.

Figure 7 shows the dependence of the oxygen permeation fluxes on the CO₂ flow rates at different temperatures. It shows that the oxygen permeation flux increased with the increase of the CO₂ flow rate. When the CO₂ flow rate increased from 15 to 70 mL/min, the oxygen permeation fluxes increased from 0.07 to 0.09 mL/(min cm²), 0.20 to 0.25 mL/(min cm²), and 0.28 to 0.37 mL/(min cm²) at 800, 900, and 975°C, respectively. The oxygen permeation fluxes through the membrane increase with the increase of the CO₂ flow rate, because the higher CO₂ flow rate would dilute the permeated oxygen concentration and lower the oxygen partial pressure on the sweep side.
It was found that the CO₂ in the feed air has a negative influence on the oxygen permeation flux as well as that in the sweep side. For example, Yi et al.¹⁵ found that the oxygen flux through SCF membrane decreased about 3% by 5% CO₂ introducing into the air at 810°C. Tong et al.¹⁶ reported that introduction of CO₂ into air side of Ba(Co₁₋ₓFeₓZrₓ)O₃₋δ membrane resulted in a distinct effect on the oxygen permeation flux. When the percentage of CO₂ mixed in air increased, the oxygen permeation flux through Ba(Co₁₋ₓFeₓZrₓ)O₃₋δ membrane continued to decrease. Therefore, it is necessary to investigate the influence of CO₂ in the feed air on the oxygen permeation flux through PLNCG membrane. Figure 8 shows the dependence of oxygen permeation flux on the concentration of CO₂ in the feed side. The total flow rate of feed gases was kept at 150 mL/min, and the oxygen partial pressure was kept at 0.21 atm. It can be seen that at different temperatures, the introduction of CO₂ into the feed air has negligible effects on the oxygen permeation fluxes. Even when the concentration of CO₂ in the feed air is 60%, the oxygen permeation fluxes through PLNCG membrane are almost unchanged. This finding demonstrates that PLNCG membrane shows a better tolerance in high concentration of CO₂ atmosphere than the MIEC membranes containing alkaline-earth metals.

Figure 9 shows the oxygen permeation fluxes through the PLNCG membranes with different thicknesses as a function of temperatures using both He and CO₂ as sweep gases. It can be seen that the oxygen permeation fluxes increase distinctly with increasing temperature when both He and CO₂ are used as the sweep gases. Figures 9A, B show that in low-temperature region (800 – 850°C), the oxygen permeation fluxes change little with decreasing membrane thickness. This indicates a significant role of the exchange kinetics to the oxygen permeation process, similar to other K₂NiF₄-type ceramics.³³,³⁴ But, when the operational temperature is over 850°C, the oxygen permeation fluxes increase slightly with decreasing membrane thickness, and the change becomes more obvious with rising temperature, which implies that when temperature increases to 900°C and above, the bulk diffusion plays more and more an important role for the oxygen permeation process through the PLNCG membrane. At 975°C, the oxygen permeation fluxes of PLNCG membrane with the thicknesses of 0.6 and 1.0 mm swept by He are 0.36 mL/(min cm²) and 0.32 mL/(min cm²), respectively. This small difference shows that surface oxygen exchange is still a main factor for the limiting step of the PLNCG membrane. The oxygen permeation flux can be improved by preparing a porous layer on the membrane surface to improve the surface exchange.³⁵,³⁶

Figure 10 shows the oxygen permeation flux through the PLNCG membrane as a function of time at 975°C using pure CO₂ as the sweep gas. It was found that a steady oxygen permeation flux of 0.32 mL/(min cm²) was obtained, and no decrease of the oxygen permeation flux was found during 230-h oxygen permeation test under pure CO₂. It is not like Ba₀.₅Sr₀.₅Co₀.₈Fe₀.₂O₃₋δ (BSCF) or La₀.₁Sr₀.₉Co₀.₅Fe₀.₅O₃₋δ perovskite materials, where carbonate was formed once CO₂ gas was introduced, and oxygen flux decreased rapidly.¹⁸,¹⁹ After the 230-h operation, both sides of the membrane were characterized by XRD. Figure 11 shows the XRD patterns of the fresh and spent PLNCG membranes.

Conclusions

In this study, PLNCG powder is synthesized by a sol–gel route. It is found that the PLNCG powder can keep its K₂NiF₄ structure after exposed to pure CO₂ at high temperature. For the oxygen permeation experiments, when pure CO₂ is introduced into the sweep side, the oxygen permeation flux through the membrane only slightly decreases. A steady oxygen permeation flux of 0.32 mL/(min cm²) is obtained during 230-h oxygen permeation at 975°C using pure CO₂ as the sweep gas. After 230-h oxygen permeation, it is found that both sides of the membrane surface keep the
K2NiF4 structure. All these results demonstrate that PLNCG is a promising stable material under CO2 containing atmosphere and has a great potential application in oxyfuel techniques for CO2 capture and storage technologies.

Acknowledgments

The authors greatly acknowledge the financial support by Natural Science Foundation of China (nos. 2009CB624304 and 200936001), the National Basic Research Program of China (no. 2009CFB243046), the Science-Technology Plan of Guangzhou City (2009JJ-3511-1), and the Fundamental Research Funds for the Central Universities, SCUT (2009220038).

Literature Cited


5. Kneer R, Toporov D, Förster M, Christ D, Broeckmann C, Pfaff E, Yashima M, Sirikanda N, Ishihara T. Crystal structure, diffusion path, and oxygen permeability of a Pr2NiO4-based mixed conductor (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4. J Am Chem Soc. 2010;132:2385–2392.


9. Gu XH, Jin WQ, Chen CL, Xu NP, Shi J, Ma YH. YSZ-SrCo0.8Fe0.2O3–δ membranes for the partial oxidation of methane to syngas. AIChE J. 2002;48:2051–2060.


12. Yang Z, Harvey AS and Gauckler LJ. Influence of CO2 on Ba0.5Sr0.5Co0.8Fe0.2O3–δ at elevated temperatures. Scr Mater. 2009;61:1083–1086.

13. Arnold M, Wang HH, Feldhoff A. Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3–δ membranes. J Membr Sci. 2007;293:44–53.


18. Liu S, Tan X, Shao Z, Diniz da Costa JC. Ba0.5Sr0.5Co0.8Fe0.2O3–δ. Adv Mater. 2005:17:1785–1788.


20. Wang HH, Cong Y, Yang WS. Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3–δ oxygen permeable membrane. J Membr Sci. 2002:210:259–271.


27. Yang Z, Harvey AS and Gauckler LJ. Influence of CO2 on Ba0.5Sr0.5Co0.8Fe0.2O3–δ hollow fibre membranes by surface modifications. J Membr Sci. 2008;324:128–135.